Nonparametric Scoring Rules

نویسندگان

  • Erik Zawadzki
  • Sébastien Lahaie
چکیده

A scoring rule is a device for eliciting and assessing probabilistic forecasts from an agent. When dealing with continuous outcome spaces, and absent any prior insights into the structure of the agent’s beliefs, the rule should allow for a flexible reporting interface that can accurately represent complicated, multi-modal distributions. In this paper, we provide such a scoring rule based on a nonparametric approach of eliciting a set of samples from the agent and efficiently evaluating the score using kernel methods. We prove that sampled reports of increasing size converge rapidly to the true score, and that sampled reports are approximately optimal. We also demonstrate a connection between the scoring rule and the maximum mean discrepancy divergence. Experimental results are provided that confirm rapid convergence and that the expected score correlates well with standard notions of divergence, both important considerations for ensuring that agents are incentivized to report accurate information.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranking forests

The present paper examines how the aggregation and feature randomization principles underlying the algorithm Random Forest (Breiman (2001)) can be adapted to bipartite ranking. The approach taken here is based on nonparametric scoring and ROC curve optimization in the sense of the AUC criterion. In this problem, aggregation is used to increase the performance of scoring rules produced by rankin...

متن کامل

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

Choosing a Strictly Proper Scoring Rule

S proper scoring rules, including the Brier score and the logarithmic score, are standard metrics by which probability forecasters are assessed and compared. Researchers often find that one’s choice of strictly proper scoring rule has minimal impact on one’s conclusions, but this conclusion is typically drawn from a small set of popular rules. In the context of forecasting world events, we use ...

متن کامل

Automated design of scoring rules by learning from examples

Scoring rules are a broad and concisely-representable class of voting rules which includes, for example, Plurality and Borda. Our main result asserts that the class of scoring rules, as functions from preferences into candidates, is efficiently learnable in the PAC model. We discuss the applications of this result to automated design of scoring rules. We also investigate possible extensions of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015